More than one third of Wisconsin soils may have yield-limiting nickel **Essential but Unmeasured: A Survey of Mehlich III** Above critical 62.7% **Extractable Nickel in the Soils of Wisconsin and Illinois**

Dustin Sawyer^{1,2}, Andy Schroeder¹, Phillip Barak²

INTRO

- Nickel is the most recently defined essential nutrient for plant growth (Brown et al., 1987)
- Little work has been done to assess soil nickel levels via readily available extraction techniques
- Less work has been done to calibrate a soil test for Ni
- Nikoli et al., 2016, appear to have done the most work in this direction and their critical deficiency levels are used in this data analysis

METHODS

- **38,000** commercial soil samples were collected across WI and northern IL for routine soil fertility testing over the sampling period 04/24/2020 -10/01/2020
- Nickel was determined via Mehlich III (1:10) ICP-OES
- Results were compared to three Mehlich III Ni critical levels for ryegrass (Lolium perenne L) outlined by Nikoli et al., 2016 (Table 1)

1: Rock River Laboratory, Inc 2: University of Wisconsin Department of Soil Science

References cited:

Table 1: Three critical levels of Mehlich III extractable Ni and percentage of samples in each state that fall below (Nikoli, et al., 2016)

ROCK RIVER LABORATORY, INC.

GRICULTURAL ANALYSIS

Calibration	WI	IL
technique	percent	percent
	below	below
Cate and Nelson	37.3	2.4
Mitscherlich-Bray	98.7	88.7
Brown et al.	99.9	99.9
	Calibration technique Cate and Nelson Mitscherlich-Bray Brown et al.	Calibration techniqueWI percent belowCate and Nelson37.3Mitscherlich-Bray98.7Brown et al.99.9

RESULTS

- WI samples have a significantly different Ni distribution than IL samples (*Figure 1*)
- 37.3% to 99.9% of WI samples and 2.4% to 99.9% of IL samples are below the critical deficiency level (*Figure 1, Table 1*), depending upon calibration technique

CONCLUSION

Mehlich III shows promise as a routine analysis method for soil Ni. Further work is needed to develop more conclusive critical levels for a diversity of crops and soil types, investigate correlations to other soil properties, and assess plant tissue Ni levels.

SCAN HERE TO VIEW AND DOWNLOAD THE FULL PAPER!

[•] Brown, P.H., R.M. Welch, and E.E. Cary. 1987. Nickel: A Micronutrient Essential for Higher Plants. Plant Physiology 85(3): 801-803

[•] Nikoli, T., T. Matsi, and N. Barbayiannis. 2016. Assessment of nickel's sufficiency critical levels in cultivated soils, employing commonly used calibration techniques. Journal of Plant Nutrition and Soil Science 179(4): 566–573.