Corn Grain Particle Size Guidelines

Summarized by Jacob Karlen and Dr. John Goeser, PAS & Dipl. ACAN March 2023

Feed Type	Parameter	Mean	Median	Goal*	Minimum
Dry Ground Corn Grain	Mean particle Size, micron	500	427	260	680
Dry Ground Corn Grain	Surface area, cm² per gram	205	185	312	125

*The Goal and Minimum correspond to the 15th and 85th percentile values for more than 400 corn grain particle size measurements conducted since May 2020, at Rock River Laboratory, Inc.

Notes:

- Corn grain particle size is known to affect rumen and total tract starch digestion by dairy cattle.
 - For each 100 unit decrease Mean Particle Size, rumen starch digestion can increase by 2 percentage units (Goeser and Shaver, 2020)
 - For example, 300 vs 600 micron MPS can account for 6 units difference in rumen starch digestion.
 - Similarly, for each 10 unit gain in Surface Area, rumen starch digestion can increase by 2 percentage units (Goeser and Shaver, 2020)
 - Improved rumen starch digestion is known to improve milk production and feed conversion efficiency and reduce fecal starch content.
- Rock River Laboratory updated the grain particle size protocol and method in May 2020, following recommendations from Kalivoda et al. (2017)
 - The current guidelines correspond to only samples analyzed with the improved protocol.
 - Results for samples analyzed prior to May 2020 do not correspond to these guidelines.

References:

- Goeser, J.P and R.D. Shaver. 2020. Commercial ground corn grain samples vary in particle size metrics and in situ rumen starch digestibility. Applied Anim. Sci. 36:610–614.
- Kalivoda, J.R., C.K. Jones, and C.R. Stark. 2017. Impact of Varying Analytical Methodologies on Grain Particle Size Determination. J Anim. Sci. 2017.95:113-119

References

Ferreira, G. 2002. Nutrient evaluation corn silage: Chemical and Physical characteristics of corn silage and their effects on in vitro disappearance. M.S. Thesis (Ch. 3) Univ. of Wisconsin-Madison.

Ferreira, G., and D.R. Mertens. 2005. Chemical and physical characteristics of corn silages and their effects of in vitro disappearance. J. Dairy Sci 88:4414-4425.

Mertens, D.R. 2005. Particle size, fragmentation index, and effective fiber: Tools for evaluating the physical attributes of corn silages. Proc. 2005 Four-State Dairy Nutr. And Management Conf. pg 211-220.